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Abstract. The purpose of this work is to present a
possible approach to the mass minimization of
structural thin-walled open section beams of the
proposed shapes (I, Z and U-beam), submitted to the
stress  constraints and multiple load cases.
Lagrange’s multipliers method has been used to
determine the optimization parameters. The area of
the cross-section is used as the objective function,
while the stress constraint is introduced and used as
the constraint function. Numerical examples are
presented to verify the analytically obtained values.

Key words: Optimization, thin-walled beams,
optimal dimensions, stress constraints, saved mass.

1. INTRODUCTION

There were a large number of research studies on the
behaviour of thin-walled structures.  The
investigations of the behaviour of thin-walled
members with open cross-sections have been carried
out extensively since the early works of Timoshenko
[13], Vlasov [14], Kollbruner and Hajdin [6],
Murray [9], Rhodes et al. [10]. In recent years, there
have emerged many studies devoted to the
optimization of thin-walled cross-sections. The issue
of solving various optimization problems has been
discussed in various works and monographs. First of
all, Gajewski and Zyczkowski [5] provided a review
of optimal designing of thin-walled structures;
Magnucki and Monczak [7] presented a variational
and parametrical optimization of open cross-section
of a thin-walled beam subject to bending; Tian and
Lu [12] optimized the cold-formed open-
channel. There have been many studies dealing with
optimization problems, treating the cases where
geometric configurations of structures are specified
and only the dimensions of structural members and
the areas of their cross-sections are determined in
order to attain the minimum structural weight or cost
[8]. Afterwards, a series of studies have appeared

where the optimization problem of various cross-
sections, such as the triangular cross-section [11], /-
section [3, 4], U-section [2] or Z-section beams [1] is
solved by means of the Lagrange multiplier method.
The idea of this paper is to develop an approach to
the optimization of thin-walled 7, Z and U cross-
section beams.

2. SUBJECT OF RESEARCHING
Two basic parts can be found in this paper. In the
first part, the mathematical model is created and the
equations which define the problem are derived. In
the second part the obtained system of equations,
which defines the optimal relation between the parts
of the considered thin-walled cross sections, is
analytically solved. The open cross-sections (I, Z
and U-beam) are considered as objects of
optimization in the paper.
The I and U-sections of the considered cantilever
beam (Fig. 1a, ¢) with principal centroidal axes X; (i
=1, 2) have the axis of symmetry.
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Fig. 1. Cross-section: a) [-beam, b) Z-beam, c) U-
beam



The Z-cross-section (Fig. 2b) has the centre and not
the axis of symmetry. It is assumed that its flanges
have equal widths b, = b;, and thicknesses #; = t3, and
that its web has the width b, and thickness #,.The
assumption is that the loads are applied in two
longitudinal planes, parallel to the longitudinal
centroidal axes at the distances & b; (i = 1, 2) (Fig.
1). In the case of the /-profile (Fig. 1a), the vertical
longitudinal plane coincides with the shearing plane.
In the Z-profile (Fig. 1b), the shearing centre
corresponds with the centre of gravity, therefore, it
can be said that the eccentricities & b; (i = 1,2) are
defined with respect to the longitudinal planes,
whereas in the U-profile (Fig. 1¢) the distance in the
case of vertical plane is measured from the shearing
plane.
If loads are applied in such a way, they will cause
the bending moments acting in the above defined
two planes parallel to the longitudinal axis of the
beam, with consequent effects of the constrained
torsion occurring in the form of the bimoment B,
causing the stresses [6].
The aim of the paper is to find the minimal cross-
sectional area

A=4 min (l)

for the given loads and material and geometrical
properties, while satisfying the constraints. In the
considered problem the cross-sectional area will be
treated as an objective function [1, 3]. Because b, =
bs, it is evident from the Fig. 1 that
A=A(b;,by))=2bt,+by t,. 2

3. CONSTRAINTS

The cross-section of the considered Z-beam (Fig. 1b)
with principal centroidal axes X; (i = 1, 2) has the
centre and not the axis of symmetry and, because of
that, the expressions (3) for equivalent bending

moments M, and M , taking into account the

influence of the bending moments around centroidal
axes x and y, denoted as M, and M, respectively,
will be used [1],

1, I
M, _My o4 M -M v
_ ’ I, ] — Y 1,
Mx = 12 ’My = 2 ' (3)
1-—= T
1.1, 1.1,
where I, I, are the moments of inertia of the cross-

xo Ly
sectional area about the centroidal axes x and y, and

I, is the product of inertia.
The normal stresses o are caused by the bending
moments My; and My, in the case of the / and U-

section beam (o y; and oy, ), i.e. M, and M, in

the case of the Z-section beam (a_x and ;y), and

by the bimoment B that appears in the case of
constrained torsion. The normal stresses caused by
the bimoment will be denoted as o, [6].

The bending moments are acting in planes that are
parallel to the longitudinal axis (Fig.1) at the
distances &b; (i=1,2). The bimoment B will occur as
their consequence and it can be expressed as the
function of the bending moments and the
eccentricities of their planes &b; (i=1, 2) [6] for the [
and U-section beam (4) and for the Z-section beam
5):

B =& bM y) +&b,M i) “)

B=&bM, +&EbM, . (5)

If oy stands for allowable stress, the constraint
function can be written for the 7 and U-section beam
(6) and for the Z-section beam (7):

¢ = (D(O- = O X1max +O-XZmax +Ga)max < Op (6)

9=(0)=0+ 0y o+ 00, <0 (D)
The maximal normal stresses [6] are defined in the
forms

—  for the / and U-section beam

My . B
O Ximax = —— (1:1,2),0 =— ®)
ma: W)(l @ max Ww

where Wy; (i = 1,2) are the section moduli for the
principal axes for the / and U-section, and
— for the Z-section beam

— M, — M, B
Oxmax = 7 >0 max :7}7 »Owmax = W_w . )

For the considered cross-sections W, and W, are the
section moduli for the longitidunal axes for the Z-
section and W, is the sectorial section modulus.
After the introduction of Eq. (8) into Eq. (6), and Eq.
(9) into Eq. (7), the constraint function becomes (10)
for the 7 and U-section beam and (11) for the Z-
section beam:

_ My +h+££o—0, (10)
Wi Wxa W,
M, B
p=-"+—2+—<o,. (11)
W, W, W,

The constraint functions (10) and (11) are reduced to
(12) for the I-section beam, (13) for the Z-section
beam and (14) for the U-section beam. The
expressions (13-15) represent the constraint
functions that correspond to the given stress
constraints.

1
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4. RESULTS AND DISCUSSION

Optimization parameters have been determined by
the Lagrange’s multipliers method [1, 3, 5, 8].
Applying the Lagrange multiplier method to the
vector which depends on two parameters b; (i=1, 2)

i[A(bl,b2)+/1¢)(bl,b2)]:O, i=12 (15,

ob

the system of equations will be obtained. After the
elimination of the Lagrange multiplier A, it will
become

0A(by,by) Oplby.br)
by by

i

Alb1.by) dglby,by)
oby aby

. (16)

4.1 Analytic solution
After introducing the expressions (4) and (5) for the
bimoment into the equations (12), (13) and (14), the
equation (16) can be reduced to an equation in the
form (17) whose solutions give the optimal values of
the ratio (18)
chzk =0,
k=0
where: z =b, /b, (18) is the optimal ratio of the parts

(17)

of the considered cross-section. The coefficients c;
are dependent on the ratio of the bending moments
and on the eccentricities & and & of their planes.

The solutions are in the form of the fourth order for
the considered /-section beam, the sixth order for the
considered Z-section beam and the eighth order for
the considered U-section beam.

4.2 Particular cases. Optimal values z=b, / b;

In the general case, bending moments about both
principal axes appear simultaneously with the
bimoment. Depending on the ratio My, /My, for the /
and U-secton and M, / M, for the Z-section beam,
there are some particular cases to consider. The
optimal ratios z (18) obtained from the equations
(17) are calculated for My, /My, (M,/ M,) =0, 0.5, 1;

) . <oy
tlbf(l + 2’22J tlbfb2(3 " 2[22J

w=05,0751landfor0< &< 1;0< &< 1. The
highest and the lowest optimal values of z My, /My,
M,/ M,)=0, 0.5, 1 and y = 0.5, 0.75 and 1.0, are
shown in a shortened form in Table 1 for the
considered cross-sections.

Table 1. Optimal z=b, /b, for y =10.5; 0.75; 1

My /My 0 0.5 1

[-section [1.09<z<12 [0.69<z<1.72 |0.51 <z<1.59
7z |Z-section [1.25<7<8.99[1.36<z2<2.74 |1.26 <z<2.49

[U-section [1.39 <z< 12 ]0.93 <z<2.22 0.71 <z<2.09,

5. A NUMERICAL EXAMPLE. ANALYSIS OF
RESULTS

This chapter will discuss some particular cases that
occur depending on the loading case.

5.1 The loading cases
In this section the 7, U and Z-section beams are fixed
at one end and exposed to the concentrated bending
moment My; (M,) = 100 Nm; My, (M,) = 0 at the
free end of the beam in two ways as:

a) Loading case 1: & =& =0 and

b) Loading case 2: £, =0.5, & =0.
The initial cross-sectional geometrical
characteristics are calculated taking into account the
initial dimensions of the I, Z and U-section beam. It
is assumed that the considered section has the initial
wall thicknesses: by = 51.75 mm, b, = 92 mm, ¢, = 8
mm, £, = 6.5 mm. This serves as the Initial model,
with the “Initial area” of the cross-section. Starting
from the initial relation Zzj,;, and for the initial
cross-sectional geometrical characteristics ¢, and #,
the optimal relation zypyima 1S calculated defining the
“Optimum area” of the cross-section.

5.2 Minimum mass determination

To illustrate the design optimization technique, we
consider the weight minimization problem of
clamped 7, U and Z-section beams shown in Fig. 1.
The problem is discussed in two ways [14, 17]: 1)
The optimum dimensions of the cross-sections
Dioptimum and Dyoprimum are arrived at by equalizing the
“Initial” and the “Optimum area” (diita=Aoptimar) and
by using the calculated optimal relation z. This case
represents the Optimum model 1 (Table 2). 2) In
the Optimum model 2, the optimal values b1 optimum
and bygpimum are obtained from the condition
requiring that the stresses must be lower than the
allowable stress. Using the optimum cross-sectional
dimensions as the starting point, the optimum
minimal cross-sectional area A, is calculated for
each loading case and the results that include the
saved mass of the material are provided in Table 2.
Table 2 shows that greater saved mass was obtained
for the I-section than for the channel and Z-sections.
Also, for all loading cases, the level of stresses is
reduced in the Optimum model 1, while the saved
mass of the material is increased with regard to the




initial stress limits in the Optimum model 2. The
calculations have shown that the maximum saved
material is obtained in the Loading case 1 and the
minimum in the Loading case 2 for all three shapes
of cross-sections.

Table 2. Optimum model 1: z ;iia=1.78

This allows for the conclusion that if the distance of
the loading plane from the shearing plane is
increased, it is less necessary to perform the
optimization of the cross-section.

: Loadin G initial Goptimuml1 Goptimum 2 Ainitial:Ao timum 1 Amin:Ao timum 2 Saved mass
Section | 2ce ® | Zopinum [MPa] | [MPa] [MPa] [mm’] [mm’] [%]
-beam 1 739 | 2.02 1.58 2.02 1260 11.64

2 1.45 9.44 9.38 9.44 1423 0.22
7-beam 1 5.58 13.4 7.5 13.4 1426 1033 27.56
2 1.84 15.9 12.7 15.9 1398 1.96
U-beam 1 7.38 2.21 1.71 2.21 1280 10.25
2 1.84 8.43 8.42 8.43 1425 0.12

6. CONCLUSION

In this paper, one approach to the optimization of the
thin-walled open section beams, loaded in a complex
way, using the Lagrange multiplier method, is
presented. Accepting the cross-sectional area for the
objective function and stress constrains for the
constrained functions, the regions of optimal values
of dimensions of all considered cross-sections are
defined. As the result of the calculation, the
modified constrained functions are derived as the
polynomials of the fourth, sixth and eighth order,
depending on the shape of the profile. The obtained
functions are subjected to the given constraints and
the obtained solution results give the optimal values
of the ratios of the parts of the considered cross-
section.

Particular attention is paid to calculating the saved
mass by means of the proposed analytical approach.
The saved mass can also be calculated for different
loading cases.

The aim of the paper is the optimization of thin-
walled elements subjected to the complex loads. It
can be concluded that the optimization approach
considered in this paper gives the general results that
can be effectively used for deriving the expressions
recommendable for technical applications.
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