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Abstract. The rheology-related effects of nozzle 
clogging in inkjet printing can seriously affect ink 
ejection rate and result in irregular droplet 
trajectory, resulting in poor printing results.In this 
study three different inkjet inks, used for functional 
printed electronics with a Dimatix materials inkjet 
printer, are investigated rheologically. In connection 
with rheological observation a novel method of 
inkjet trajectory image analysis gives insight into the 
irregularity of directional deviation due to clogging 
of nozzles of the printerIt is found that the 
rheological behaviour has a profound effect in the 
printing regime, which directly has an effect on ink-
droplet trajectory and contact characteristic with 
the substrate.  
Keywords: inkjet printing, rheology of inkjet inks, 
nozzle clogging, ink droplet trajectory. 
 
1. INTRODUCTION 
Inkjet printing (IP) is a versatile, non-contact, 
highspeed and precise patterning technique which 
decreases the manufacturing costs of printable 
devices by minimising the waste and process time 
[3, 5]. Commercialisation of many research 
technologies on numerous substrates can only be 
realised by such an economic, ecologically-
friendlyand high throughput method[5]. Although 
especially drop-on-demand (DoD) IP is a very 
competitive mass production method it poses some 
limitations preventing it to be a standard part of the 
manufacturing lines especially due to the crucial ink 
requirements [5, 6]. The DoD process starts with an 
impulse applied to the nozzle of the printer and a 
drop is formed within the limitations given by the 
nature of the ink and properties of the printer, 

followed by the ejection from the nozzle. The 
droplet, in some cases with undesirable ‘satellite 
drops’, travels between the printing orifice and the 
substrate [2]. Ideally, the satellite-free and round-
shaped drop needs to follow a straight trajectory 
with a controlled velocity. Clogging of nozzles in 
inkjet printing is the most disruptive phenomenon in 
the sensitive operation of ink-jet printing, affecting 
print quality in several ways. Partial clogging can 
change the flow pattern and print out uniformity, and 
the internal property and quality of ejected ink can 
be seriously compromised, not least by a 
contamination derived from a clogging build-up 
breaking off and entering the ejected drop. While 
researchers have intensively used IP technology in 
the manufacture of many printed electronic devices, 
such as thin-film transistors (TFT), solar interactive 
dyes and respective electrolytes, and organic light 
emitting diodes (OLED), there are still problems 
present related to unevenness of prints, that are a 
result of nozzle choking, an effect of fast solvent 
evaporation and complex rheological behaviour of 
the IP inks [20].  
Various types of IP inks have been developed with 
low viscosity solvents in order to increase 
performance ofthe print out, especially when used 
for electronic device applications.  Reduction of 
fluidity of the inks through evaporation and gelation 
is important to prevent leakage and avoid 
undesirable contact with solvents, especially when 
sealing materials are present. In addition, too high an 
increase in viscosity of the IP ink used for printing 
electronics upon gelation leads to dilatant behaviour, 
and can furthermore lead to undesirable clogging of 
the IP nozzles [7,8].  



In order to obtain high performance jetting of the 
functional IP inks used for Dimatix printer, 
optimised parameters define the desirable physical 
properties for the jetting of inks used for printed 
electronics: viscosity (η ~ 10-12 mPa.s), surface 
tension (σ ~ 28-42 x 10-3 Nm-1), boiling point (more 
than 100° C), density (more than 1 gcm-3), pH value 
(4-9).  
Using rheological evaluation of the three different 
IP-functional inks used for functional printing of 
electronic devices, discussed in this paper, in respect 
to their viscosity dependence over a broad shear rate 
range and their structure recovery, it is possible to 
correlate their flow parameters with the print out 
performance. Measuring ejected trajectory from a 
cleanDimatix nozzle, and a same nozzle after 
printing has been performed for a few days, we can 
observe that clogging of the nozzle due to the 
observed complex rheological behaviour results in a 
change in ejected trajectory[11-14]. 
 
2. EXPERIMENTAL METHODS 
2.1 Characterisation of Inks 
Three types of organic solvents were used for   
production of functional printing IP inks, aimed for 
printing electronics:L-D (low-dilatant), M-D 
(medium dilatant) and H-D(high dilatant), 
respectively. The respective solvents had different 
boiling temperatures of 285 ºC, 164 ºC and 82 ºC.  
The surface tension of L-D, M-D and L-D exhibited 
surface tension values ofσ = 40 mN.m-1, 27 mN.m-1, 
24 mN.m-1, as measured using an optical surface 
tension meter (CAM 200 from KSV instruments) in 
pendant drop mode, respectively. 
The viscosity behaviour is a complex phenomenon, 
which is presented in detail below.  
 
2.2 Inkjet Printing Process 
A piezoelectric, laboratory scale DoD materials 
inkjet printer (Dimatix 2831-DMP) [14, 17, 20] was 
used to test the printability of the inks. The DMP 
employs a disposable cartridge which is made of 
chemically resistant polypropylene silicone and 
silicon dioxide. The cartridge is composed of 2 main 
components: jetting and storage units. Following a 
filtering step, and (for some cases) degassing, 
around 2 cm3 liquid is filled into the polypropylene 
bag in the printer storage unit with the help of a 
special syringe with a blunt tip needle and the two 
units were attached together. The regular cleaning 
cycles can be run before, during and after the 
printing process with contact made with a cleaning 
pad to maintain or improve the printing 
performance. The cleaning cycle consists of three 
actions: blotting, purging and jetting having 
adjustable order and time lengths [14].The substrate 
is placed on a special platen having equally spaced 
holes which provides vacuum to keep the substrate 
in the desired position. The platen temperature can 
be raised to 60-70°C.The ink is jetted upon an 

impulse applied to the jetting module of the 
cartridge, which is attached to the storage unit. In the 
jetting module 16 nozzles are embedded in a single 
row and each nozzle has a channel-type connection 
to the ink storage unit. The straightforward and 
flexible processability of printers that operate at 
relatively low frequency, 1-20 kHz, makes inkjet 
printing easier and more popular when small 
amounts of expensive inks are employed [5-8]. The 
main limiting factors for such an operatingcondition 
are the fast evaporation of the solvent, resulting in 
choking of the nozzles, and increase in the viscosity 
[14, 20]. 
 

 
Fig.1. Fujifilm’s Dimatixmaterials printer DMP-
2831 and its print head parts: a)DoD inkjet printer, 
which allows the user to deposit fluid materials on 
an A4 sized substrate using piezo-based inkjet 
cartridge, and b) the cartridge consisting of  storage 
unit and jetting (printing) head. 
 
2.3 Rheometry 
Rheological measurements were made to 
characterise the viscoelastic properties of the inks in 
different temperature and shear ranges. 
 
2.3.1 Linear and non-linear behaviour  
The viscoelastic rheological investigations were 
performed at 23 °C by means of an Anton Paar 300 
(Anton Paar Austria GmbH) oscillatory constant 
stress/strain and variable shear rheometer. For 
rheological measurements of inks, an upper serrated 
plate-plate geometry PP-25 was selected, while the 
bottom plate was smooth, in order to reduce any 
potential wall-slip effect, gap was set to 0.5 mm. In 
order to avoid any memory-effect from previous 
deformations all samples were pre-sheared under 
oscillation at an angular frequency (ω) of 10 rad.s-1 
and strain deformation (γ) of 0.01 % for 10 min, 
followed by a rest stationary state time of 15 min. To 
prevent evaporation of the water medium, a layer of 
silicone oil was spread around the boundary of the 
sample in the geometry in contact with the air - a 
common procedure [2, 19]. To perform the 
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flow curve for dynamic viscosity (η), b) viscoelastic 
response expressed through complex viscosity (η*) 
showing increase at higher frequencies, being lowest 
from L-D. 
 

 
Fig. 3. Response of ƞ in 3ITTfor the example 
functional inks: a) step wise constant shear rate, and 
b) a linearly increasing shear rate showing dilatant 
behaviour of inks. 
 
The more stable response of the L-D ink can explain 
its good printability, whilst, on the contrary, the poor 
performance of the remaining inks can be explained 
as clogging of the nozzle cause by increased 
elasticity and dilatant viscosity accompanied with 
faster solvent evaporation, as presented in Table 1, 
where the dynamic viscosity is normalised to the 
equilibrium low shear viscosity η0. 
 

 
Table 1. Rheological parameters of the three 
functional inksobtained from flow curves and 
structure recovery tests. 
 
The IP-ink printing performance was tested on 
Xerox paper for the clarity of information, as shown 
in Fig. 4a)-c). With paper as substrate it is clearly 
possible to see the difference between the ideal dot 
shape when it comes in contact with substrate 
“single spherical droplet size before spreading” and 
dot printouts in respect to the solvent used for each 
ink[13, 16]. Once the deposits of the ink are formed 
at the nozzle they tend to clog the inkjet print head 
due to further attractive build-up and reduced 

velocity of flow, which in turn reduces print 
performance further and even requires frequent 
replacement of the ink supply channel.  
The spreading of the ink shown in Fig. 4 is primarily 
a function of ink-paper interaction during the 
absorption phase of drying. However, asymmetry of 
the droplet, and the presence of satellites when 
observed relates to the jetting performance. 
 

 
Fig. 4. Functional IP inks printed on Xerox paper: a) 
“single spherical droplet”, b) spreading of ink 
solvent on paper causing uneven concentration 
within the ink matrix, c) extreme spreading of ink 
due to uneven distribution of solvent and ink 
particles on the substrate. 
 
3.2 Droplet trajectory 
In order to study the impact of rheology on the 
clogging of the nozzle and the effect it has on ink 
trajectory, in drop trajectory evaluation was carried 
using image processing from the images taken 
during the jetting process of M-D ink. In the current 
study, one cycle of the inkjet printing was taken into 
account, video frames of which images were 
extracted for one single nozzle and shown in Fig. 
5a)-c). Thereafter, extracted frames were digitised to 
form a binary image so as to obtain foreground and 
background pixel data as seen in Fig. 5a). To 
determine the binary threshold, the Otsu method was 
used, which minimises the combined spread of 
foreground and background pixels [11]. 



 
 
Fig.5. Droplet ejection during the inkjet 
printingprocess: a)image processing from original 
image to binary image with white coloured 
foreground pixels, b) schematic representation of the 
droplet centroid, and c) droplet centroids ejected 
from a clean nozzle following a linear trajectory 
compared withdroplet centroids from a nozzle that 
has been used for a few days. 
 
Following the binary conversion, morphological 
analysis was performed to define the droplet 
centroid coordinates for the ith frame as 

  1 1, ,
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where(xj, yj) are the coordinates of the jthforeground 
pixel and n is the total number of foreground pixels 
inside the investigated droplet in Fig. 5c). 
The droplet trajectory is followed using the centroid 
data for each consecutive frame in Eq. (1). For this 
purpose, the data were fitted to a first order 
polynomialto investigate whether the droplet follows 
a linear trajectory. Here, Y coordinate data are 
simply taken to be dependent on the X coordinate 
data. For the linear drop trajectory the fitted 
polynomial, 

74.16 -720.11Y X                                       (2) 
with angular difference 

ref 0.77    was calculated. 

This trajectory was hence used as reference for 
further computations. The deviated drop trajectory 

the fitted polynomial was  
4.91 -29.77Y X                                           (3) 

with angular difference
ref 10.74       , 

which is giving significant difference in position 
where dot actually consolidates  
 
3. CONCLUSIONS 
Three differentIP inks for functional printing on 
electronic devices were fabricated from different 
organic solvents, with different physical properties. 
Their dilatant rheological behaviour was found to 
have a deleterious effect on printing performance, 
and further cause clogging of the inkjet nozzles, 
which resulted in a change of ejected ink droplet 
trajectory. For the first time, deviation angle of ink 
trajectory has been measured using image 
processing. By careful tailoring of solvent used for 
preparation of ink deleterious dilatant behaviour of 
inks can be reduced,and soprovides potential for 
further  development of  DoD-IP processes for 
functional printing. 
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