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The Z-cross-section (Fig. 2b) has the centre and not 
the axis of symmetry. It is assumed that its flanges 
have equal widths b1 = b3, and thicknesses t1 = t3, and 
that its web has the width b2 and thickness t2.The 
assumption is that the loads are applied in two 
longitudinal planes, parallel to the longitudinal 
centroidal axes at the distances ξi bi (i = 1, 2) (Fig. 
1). In the case of the I-profile (Fig. 1a), the vertical 
longitudinal plane coincides with the shearing plane. 
In the Z-profile (Fig. 1b), the shearing centre 
corresponds with the centre of gravity, therefore, it 
can be said that the eccentricities ξi bi (i = 1,2) are 
defined with respect to the longitudinal planes, 
whereas in the U-profile (Fig. 1c) the distance in the 
case of vertical plane is measured from the shearing 
plane.  
If loads are applied in such a way, they will cause 
the bending moments acting in the above defined 
two planes parallel to the longitudinal axis of the 
beam, with consequent effects of the constrained 
torsion occurring in the form of the bimoment B, 
causing the stresses [6].  
The aim of the paper is to find the minimal cross-
sectional area 

minAA              (1) 

for the given loads and material and geometrical 
properties, while satisfying the constraints. In the 
considered problem the cross-sectional area will be 
treated as an objective function [1, 3]. Because b1 = 
b3, it is evident from the Fig. 1 that 

221121 2),( tbtbbbAA  .           (2) 

 
3. CONSTRAINTS 
The cross-section of the considered Z-beam (Fig. 1b) 
with principal centroidal axes Xi (i = 1, 2) has the 
centre and not the axis of symmetry and, because of 
that, the expressions (3) for equivalent bending 

moments xM  and yM  taking into account the 

influence of the bending moments around centroidal 
axes x and y, denoted as Mx and My  respectively, 
will be used [1], 
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where Ix, Iy are the moments of inertia of the cross-
sectional area about the centroidal axes x and y, and 
Ixy is the product of inertia. 
The normal stresses  are caused by the bending 
moments MX1 and MX2 in the case of the I and U-

section beam ( 1X  and 2X ), i.e. xM  and yM  in 

the case of the Z-section beam ( x  and y ), and 

by the bimoment B that appears in the case of 
constrained torsion. The normal stresses caused by 
the bimoment will be denoted as   [6]. 

The bending moments are acting in planes that are 
parallel to the longitudinal axis (Fig.1) at the 
distances ξibi (i=1,2). The bimoment B will occur as 
their consequence and it can be expressed as the 
function of the bending moments and the 
eccentricities of their planes ξibi (i=1, 2) [6]  for the I 
and U-section beam (4) and for the Z-section beam 
(5): 

222111 XX MbMbB                 (4) 

yx MbMbB 2211   .            (5) 

If 0 stands for allowable stress, the constraint 
function can be written for the I and U-section beam 
(6) and for the Z-section beam (7): 

  0maxmax2max1    XX  (6) 

  0maxmax max
   yx .      (7) 

The maximal normal stresses [6] are defined in the 
forms  
 for the I and U-section beam  

 1,2i   max 
Xi

Xi
Xi W

M , 


 W

B
max       (8) 

where WXi (i = 1,2) are the section moduli for the 
principal axes for the I and U-section, and 
 for the Z-section beam 
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For the considered cross-sections Wx and Wy are the 
section moduli for the longitidunal axes for the Z-
section and W is the sectorial section modulus.  
After the introduction of Eq. (8) into Eq. (6), and Eq. 
(9) into Eq. (7), the constraint function becomes (10) 
for the I and U-section beam and (11) for the Z-
section beam: 
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The constraint functions (10) and (11) are reduced to 
(12) for the I-section beam, (13) for the Z-section 
beam and (14) for the U-section beam. The 
expressions (13-15) represent the constraint 
functions that correspond to the given stress 
constraints. 
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4. RESULTS AND DISCUSSION 
Optimization parameters have been determined by 
the Lagrange’s multipliers method [1, 3, 5, 8]. 
Applying the Lagrange multiplier method to the 
vector which depends on two parameters bi (i=1, 2) 

     1,2i    ,0,, 2121 



bbbbA
bi

       (15), 

the system of equations will be obtained. After the 
elimination of the Lagrange multiplier , it will 
become  
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4.1 Analytic solution 
After introducing the expressions (4) and (5) for the 
bimoment into the equations (12), (13) and (14), the 
equation (16) can be reduced to an equation in the 
form (17) whose solutions give the optimal values of 
the ratio (18) 

0
0




n

k

k
k zc ,      (17) 

where: 12 bbz  (18) is the optimal ratio of the parts 

of the considered cross-section. The coefficients ck 
are dependent on the ratio of the bending moments 
and on the eccentricities ξ1 and ξ2 of their planes. 
The solutions are in the form of the fourth order for 
the considered I-section beam, the sixth order for the 
considered Z-section beam and the eighth order for 
the considered U-section beam.  
 
4.2 Particular cases. Optimal values z = b2 / b1  
In the general case, bending moments about both 
principal axes appear simultaneously with the 
bimoment. Depending on the ratio MX2 /MX1 for the I 
and U-secton and My / Mx for the Z-section beam, 
there are some particular cases to consider. The 
optimal ratios z (18) obtained from the equations 
(17) are calculated for MX2 /MX1 (My / Mx) = 0, 0.5, 1; 

ψ = 0.5, 0.75, 1 and for 0 ≤  ξ1 ≤  1; 0 ≤  ξ2 ≤  1. The 
highest and the lowest optimal values of z MX2 /MX1 
(My / Mx)=0, 0.5, 1 and ψ = 0.5, 0.75 and 1.0, are 
shown in a shortened form in Table 1 for the 
considered cross-sections. 
 
Table 1.  Optimal z = b2 /b1 for  ψ = 0.5; 0.75; 1                

MX2 /MX1 0 0.5 1 

z 
I-section 1.09  z  12 0.69 z 1.72 0.51 z 1.59
Z-section 1.25 z  8.99 1.36 z  2.74 1.26 z 2.49
U-section 1.39 z   12 0.93 z  2.22 0.71 z 2.09

 
 
5. A NUMERICAL EXAMPLE. ANALYSIS OF 
RESULTS 
This chapter will discuss some particular cases that 
occur depending on the loading case. 

 
5.1 The loading cases 
In this section the I, U and Z-section beams are fixed 
at one end and exposed to the concentrated bending 
moment MX1 (Mx) = 100 Nm; MX2 (My) = 0 at the 
free end of the beam in two ways as:  

a) Loading case 1: 1 = 2 = 0 and  
b) Loading case 2: 1 = 0.5, 2 = 0. 

The initial cross-sectional geometrical 
characteristics are calculated taking into account the 
initial dimensions of the I, Z and U-section beam. It 
is assumed that the considered section has the initial 
wall thicknesses: b1 = 51.75 mm, b2 = 92 mm, t1 = 8 
mm, t2 = 6.5 mm. This serves as the Initial model, 
with the “Initial area” of the cross-section. Starting 
from the initial relation zinitial and for the initial 
cross-sectional geometrical characteristics t1 and t2 
the optimal relation zoptimal is calculated defining the 
“Optimum area” of the cross-section. 
 
5.2 Minimum mass determination 
To illustrate the design optimization technique, we 
consider the weight minimization problem of 
clamped I, U and Z-section beams shown in Fig. 1. 
The problem is discussed in two ways 14, 17: 1) 
The optimum dimensions of the cross-sections 
b1optimum and b2optimum are arrived at by equalizing the 
“Initial” and the “Optimum area” (Аinitial=Аoptimal) and 
by using the calculated optimal relation z. This case 
represents the Optimum model 1 (Table 2). 2) In 
the Optimum model 2, the optimal values b1optimum 
and b2optimum are obtained from the condition 
requiring that the stresses must be lower than the 
allowable stress. Using the optimum cross-sectional 
dimensions as the starting point, the optimum 
minimal cross-sectional area Аmin is calculated for 
each loading case and the results that include the 
saved mass of the material are provided in Table 2.  
Table 2 shows that greater saved mass was obtained 
for the I-section than for the channel and Z-sections. 
Also, for all loading cases, the level of stresses is 
reduced in the Optimum model 1, while the saved 
mass of the material is increased with regard to the 



initial stress limits in the Optimum model 2. The 
calculations have shown that the maximum saved 
material is obtained in the Loading case 1 and the 
minimum in the Loading case 2 for all three shapes 
of cross-sections.   

This allows for the conclusion that if the distance of 
the loading plane from the shearing plane is 
increased, it is less necessary to perform the 
optimization of the cross-section.          
 

 
Table 2.  Optimum model 1: z initial=1.78                

Section 
Loading 

case 
zoptimum 

σ initial 
[MPa] 

σoptimum1 
[MPa] 

σoptimum 2 

[MPa] 
Ainitial=Аoptimum 1 

[mm2] 
Amin=Аoptimum 2 

[mm2] 
Saved mass 

[%] 

I-beam 
1 7.39 2.02 1.58 2.02 

1426 
 

1260 11.64 
2 1.45 9.44 9.38 9.44 1423 0.22 

Z-beam 
1 5.58 13.4 7.5 13.4 1033 27.56 
2 1.84 15.9 12.7 15.9 1398 1.96 

U-beam 
1 7.38 2.21 1.71 2.21 1280 10.25 
2 1.84 8.43 8.42 8.43 1425 0.12 

                
6. CONCLUSION 
In this paper, one approach to the optimization of the 
thin-walled open section beams, loaded in a complex 
way, using the Lagrange multiplier method, is 
presented. Accepting the cross-sectional area for the 
objective function and stress constrains for the 
constrained functions, the regions of optimal values 
of dimensions of all considered cross-sections are 
defined. As the result of the calculation, the 
modified constrained functions are derived as the 
polynomials of the fourth, sixth and eighth order, 
depending on the shape of the profile. The obtained 
functions are subjected to the given constraints and 
the obtained solution results give the optimal values 
of the ratios of the parts of the considered cross-
section.   
Particular attention is paid to calculating the saved 
mass by means of the proposed analytical approach. 
The saved mass can also be calculated for different 
loading cases.  
The aim of the paper is the optimization of thin-
walled elements subjected to the complex loads. It 
can be concluded that the optimization approach 
considered in this paper gives the general results that 
can be effectively used for deriving the expressions 
recommendable for technical applications. 
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